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Best Possible Control 
Following Physical Damage

During Flight

Battle or 
other unexpected 
damage

High level of adapatability 
required

Is the technology here or imminent?

Examples exist but,



System Requirements

• State of System - Access from aero/control viewpoint

– What control devices are still functional?

– What is the existing surface geometry for the vehicle?

• Broadcast Alert - Automatic alert of status and need

• Mission Plan  - Develop/modify in light of situation

– What is best emergency mission from existing options? 
• Landing, ditching options - location?

• Redesign control system to reflect mission selected

• Update - Continually as mission evolves



Examining Approaches that Promise 
High Adapatbility

• Adaptive Control 

– May be good for highly structured cases but, past experience is 
dissappointing.

• Neural-Networks

– Since there is no tie to physics of process, for reasonable behavior, 
not luck, the system must have seen a like event before, either in 
real or simulated situations, and be trained to respond properly. 

• Physics-Based Schemes

– Requires adaquate sensors and control devices for implementation

– Current progress in computer technology offers hope of 

Incorporating CFD into flight control systems



Available CFD theories

Viscous, compressible flow

– called Navier-Stokes theory - Most complex

Invicid, compressible theory

– called Euler theory - Still complex but needed for 
supersonic and transonic flow cases

Invicid, incompressible theory -

– called potential theory for fluid flow

– can be used for high subsonic with compressibility 
corrections added

– can be used in conjunction with a boundary layer 
theory (BLT) to deal with real flowphenonema

Theory of choice



Modelling with Potential Flow

• Continuity Equation -> Potential Equation

• Momentum -> Bernoulli Equation for pressure distributions

• Doublet distributions over wakes -> produce circulation 
driven by Kutta conditions

• Modelling separation point and bubble generates effective 
surfaces to define potential flow regions

Fundamental Relations:



Synopsis of Potential Theory

• Conservation of mass is fundamental equation, ∆Φ = 0
• V = grad(Φ) in (x,y,z) space where V is the velocity of a 

particle at (x,y,z) and Φ is the velocity potential at (x,y,z) 
• Requires no vorticity in flow regions considered 

• To solve: 

– Green’s formula -> Need only grid the near field boundaries -- 
aircraft surfaces (with separation bubbles) and wakes 

– Panel methods well developed which incorporate far field 
boundary conditions analytically. 

– Time varying flow results from separation dynamics and 
deformation of the boundaries, e.g. control surface motions



Synopsis of Potential Theory
-- Time Varying with Conservative Body Forces --

S atisfy  potential eq uatio n at each in stant of tim e as w ell as  new  Bernoulli
equation to  define press ures :
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w here:

•  t is  tim e

•  p  is  pres su re at (x, y, z)

•  ρ  is  fluid d ens ity at (x, y, z)

•  U  is  th e body force po tential,  us ually  - g • ∆ z

•  f  ~  usually zero



Long Range Plan

• Refine DCB core competency in CFD

– 2 D Panel code -> basic potential method with boundary layer

– 3 D code for implementation

• Select target vehicle - Sensor/actuator driven system

– Need on-line surface grid generation and pressures

– J. Foster’s RPV, DARPA’s X36 experiment, or other

• Architecture incorporating CFD in a flight control system

– Study ability to predict - time horizon, correlatablilty

– Develop prediction, estimation, system ID for on-line tuning

– Control law studies, design, integration

• Simulation and Fail-Safe Flight Demonstration

– recover from failure in small target region of vehicle - e.g. add 
vertical tail to tailless design and blow off - other concepts possible. 



Kalman Estimator for 
Real-Time Flow Control
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Potential Flow Model

Pressure Measurements

Ak = M-1Fk

Ck(σ), Predicted 
Source/Doublet Distribution
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Fail-Safe Flight Demonstration
- Blended-Wing Model or X36 -

Video 

Throw-away vertical 
stabilizer and rudder

Blended-Wing Mod



Now, Here’s Mike#@$@%!!

(I’ll try to be quiet.)


